1) $(4,-3,2)$ Solving 3×3 Systems
2) $(1,2,3)$ -Yellow WS
3) $(.5,1,-1)$ Check Answers!
4) $(7,9,3)$
5) $(6,6,-4)$
6) $(10,-10,6)$

*3 variable DLT

Unit 4 (3.5/3.6) * Need a Adding, Subtracting, and Multiplying Matrices

A matrix is a rectangular arrangement of numbers in
rows and orris.

Matrices are equal if they have the same dimension and all the same entries.

$$
B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad C=\left[\begin{array}{rr}
2 \times 2 & 2 \\
3 & 4
\end{array}\right]
$$

$x^{\text {Add/Subtract- only if the dimensions are }}$ the same

KEY CONCEPT
 For Your Notebook

Adding and Subtracting Matrices
To add or subtract two matrices, simply add or subtract elements in corresponding positions. You can add or subtract matrices only if they have the same dimensions.
$\begin{aligned} & \text { Adding } \\ & \text { Matrices }\end{aligned} \quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$
$\begin{aligned} & \text { Subtracting } \\ & \text { Matrices }\end{aligned}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]-\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a-e & b-f \\ c-g & d-h\end{array}\right]$
a. $\left[\begin{array}{ccc}3 & -1 & 9 \\ -4 & 2 & 0\end{array}\right]-\left[\begin{array}{ccc}-5 & 6 & 1 \\ .5 & 2 & 7 \\ 2 \times 3\end{array}\right]=\left[\begin{array}{ccc}8 & -7 & 8 \\ -4.5 & 0 & -7\end{array}\right]$

$$
\begin{aligned}
& \text { b. }\left[\begin{array}{ccc}
4 & 0 & -2.1 \\
3 & -1 & 5 \\
6 & 7.9 & 10
\end{array}\right] \oplus\left[\begin{array}{ccc}
\underline{6} & 1 & 1.1 \\
4 & -6 & 4 \\
4 & -3.9 & 7
\end{array}\right]=\left[\begin{array}{ccc}
10 & 1 & -1 \\
7 & -7 & 9 \\
10 & 4 & 17
\end{array}\right] \\
& \text { c. }-3\left[\begin{array}{ccc}
-1 & 0 & 9 \\
2 & -6 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
-6 & 18
\end{array}\right]
\end{aligned}
$$

CONCEPT SUMMARY

For Your Notebook

Properties of Matrix Operations

Let A, B, and C be matrices with the same dimensions, and let k be a scalar.
Associative Property of Addition $\quad(A+B)+C=A+(B+C)$
Commutative Property of Addition
$A+B=B+A$
Distributive Property of Addition
$k(A+B)=k A+k B$
Distributive Property of Subtraction
$k(A \quad B)=k A \quad k B$

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], B=\left[\begin{array}{cc}
-2 & 4 \\
8 & -6
\end{array}\right] \text {, and } C=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& \text { a. } A+2 B=
\end{aligned}
$$

$$
\text { b. } A-B+C=
$$

\#11-15

 11) $3 \mathrm{~A}-\mathrm{X}=\mathrm{C}$

KEY CONCEPT

 For Your Notebook
Multiplying Matrices

Words To find the element in the i th row and j th column of the product matrix $A B$, multiply each element in the i th row of A by the corresponding element in the j th column of B, then add the products.
Algebra $\quad\left[\begin{array}{cc}A & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{cc}e^{B} & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$

$$
\frac{\left[\begin{array}{ccc}
2 & 4 & -1 \\
8 & -3 & -2
\end{array}\right] \cdot\left[\begin{array}{cc}
4 & 0 \\
1 & 0
\end{array}\right]}{2 \times\left(\frac{3 \times 2 \times 2}{3 \times 2} \times p^{2}\right.}=
$$

Navigator
(A) $\left[\begin{array}{rr}-4 & 12 \\ 3 & -3\end{array}\right]$

(C) $\left[\begin{array}{rr}-4 & 11 \\ 12 & -3\end{array}\right]$
(D) $\left[\begin{array}{rr}4 & -11 \\ 0 & 3\end{array}\right]$
$\left[\begin{array}{l}1(4)^{4}+-4(0) \\ 3(4)+2(0)\end{array}\right.$

$$
3(-1)+(-2)-3)
$$

CONCEPT SUMMARY For Your Notebook
Properties of Matrix Multiplication
Let A, B, and C be matrices and let k be a scalar.
Associative Property of Matrix Multiplication
$A(B C)=(A B) C$
Left Distributive Property
$A(B+C)=A B+A C$
Right Distributive Property
Associative Property of Scalar Multiplication $(A+B) C=A C+B C$
$k(A B)=(k A) B=A(k B)$

Solve for x and y.
$2\left[\begin{array}{cc}8 & -x \\ 5 & 6\end{array}\right]-\left[\begin{array}{cc}3 & -9 \\ 10 & -4 y\end{array}\right]=\left[\begin{array}{ll}13 & 3 \\ 0 & 16\end{array}\right]$
$\left[\begin{array}{cc}\frac{16}{10} & -\frac{2 x}{12} \\ 16-3=13\end{array}\right]=\left[\begin{array}{ll}3 & -9 \\ 1.0 & -4 y\end{array}\right]=\left[\begin{array}{ll}13 & 3 \\ 0 & 16-9=3\end{array}\right]$
$12--4 y=16 \quad-9-9$
$12--4 y=16$
$12+4 y=16$
$\frac{-2 x}{-2}=\frac{-6}{-2}$
$x=3$
$-12 \quad-12$
$\begin{aligned} \frac{4 y}{4} & =\frac{4}{4} \\ y & =1\end{aligned}$

And your homework:
 Unit Plan Day 3 (3.5/3.6)
 *Matrix worksheet

