Solve the system using Linear Combination.

1)=
$$(8x + 9y = 15)$$
 $16x + 18x = 30$ Warm-up $95x - 2y = 17$ $45x - 18x = 153$ $61x = 183$ $x = 3$ $x = 3$

Solve the system using Substitution.

2)
$$x-2y=4$$
 $x-2y+4$
 $3x-6y=8$ $3(2y+4)-6y=8$
 $6y+12-6y=8$
 $12=8$
 $12=8$

Solving Linear Systems Application Problems -Set up each problem

Homework Questions:

10.) (-6, 5) 1.) (2.33, -0.33) 2.) (2.71, 9.57) 3.) (11.08, 16.25) 4.) (24, -43) 4.) (4, 4)

18.) many solutions

1.) 6lbs \$1.10 coffee 14lbs \$0.80 coffee

2.) 25lbs \$1.16 tea 35lbs \$0.92 tea

3.) 12lbs \$0.70 chips 18lbs \$0.90 chips

4.) 11 nickels, 6 pennies

5.) 11 quarters, 5 dimes

6.) 14 dimes, 7 nickels

7.) 18, -7

8.) 9, 27

9.) 12, 7 10.) 38, 56

11.) \$1600 at 2%

\$4800 at 4%

12.) \$4000 at 6% \$4600 at 5%

13.)\$3500 at 5% \$1200 at 4.5%

14.) length 30 width 15 15.) 35, 55 16.) 60, 120

Bonus

Find the vertex of the following quadratic

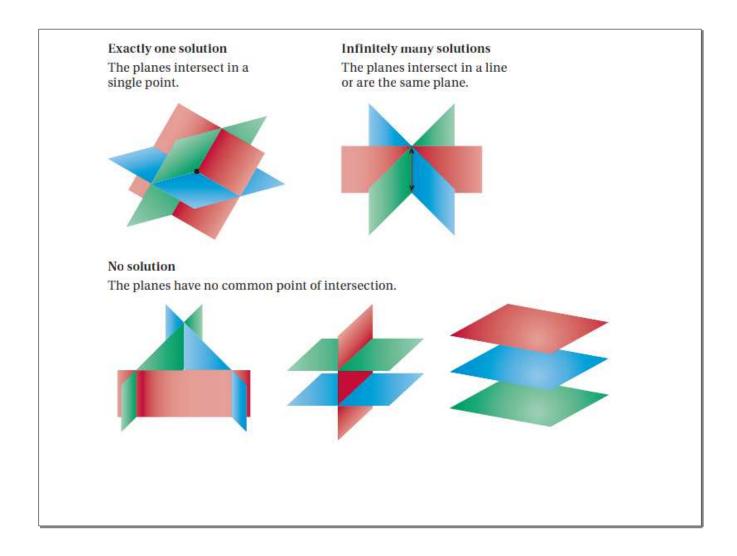
$$y=-(x-4)^2+7$$

- A. (4,-7)
- B. (-4,7)
- C. (4, 7)
- D. (-4, -7)

Algebra 2 Trig Daily Learning Target Quiz Unit 4 - Day 2

$$y = -x + 5$$
$$-2x + 3y = 0$$

2.) Solve by substitution:


$$8x + 2y = 2$$

$$x + 3y = 14$$

$$7x-3y=6$$
$$-2x+5y=-10$$

4.) A vendor sold 200 tickets for an upcoming rock concert. Floor seats were \$36 and stadium seats were \$28. The vendor sold \$6080 in tickets. How many floor seats and how many stadium seats were sold?

Chapter 3 Systems (3.4)3 Variable Systems

KEY CONCEPT

For Your Notebook

The Elimination Method for a Three-Variable System

- **STEP 1** Rewrite the linear system in three variables as a linear system in two variables by using the elimination method.
- **STEP 2** Solve the new linear system for both of its variables.
- **STEP 3** Substitute the values found in Step 2 into one of the original equations and solve for the remaining variable.

If you obtain a false equation, such as 0 = 1, in any of the steps, then the system has no solution.

If you do not obtain a false equation, but obtain an identity such as 0 = 0, then the system has infinitely many solutions.

Notes Sheet

(1)
$$2 \times - y + z = 4$$

(2) $\times + 3y - z = 11$

(3) $4 \times + y - z = 14$

(4) $2 \times - y + z = 4$

(5) $6 \times z = 14$

(7) $3 \times z + 2 = 15$

(8) $2 \times - y + z = 14$

(9) $3 \times z + 2 = 15$

(1) $3 \times z + 2 = 15$

(2) $3 \times z + 2 = 15$

(3) $3 \times z + 2 = 15$

(4) $3 \times z + 2 = 15$

(5) $3 \times z + 2 = 15$

(6) $3 \times z + 2 = 15$

(7) $3 \times z + 2 = 15$

(8) $3 \times z + 2 = 15$

(9) $3 \times z + 2 = 15$

(10) $3 \times z + 2 = 15$

(21) $3 \times z + 2 = 15$

(32) $3 \times z + 2 = 15$

(4) $3 \times z + 2 = 15$

(5) $3 \times z + 2 = 15$

(6) $3 \times z + 2 = 15$

(7) $3 \times z + 2 = 15$

(8) $3 \times z + 2 = 15$

(9) $3 \times z + 2 = 15$

(10) $3 \times z + 2 = 15$

(11) $3 \times z + 2 = 15$

(12) $3 \times z + 2 = 15$

(23) $3 \times z + 2 = 15$

(34) $3 \times z + 2 = 15$

(45) $3 \times z + 2 = 15$

(5) $3 \times z + 2 = 15$

(6) $3 \times z + 2 = 15$

(7) $3 \times z + 2 = 15$

(8) $3 \times z + 2 = 15$

(9) $3 \times z + 2 = 15$

(10) $3 \times z + 2 = 15$

(11) $3 \times z + 2 = 15$

(12) $3 \times z + 2 = 15$

(24) $3 \times z + 2 = 15$

(25) $3 \times z + 2 = 15$

(17) $3 \times z + 2 = 15$

(18) $3 \times z + 2 = 15$

(19) $3 \times z + 2 = 15$

(29) $3 \times z + 2 = 15$

(20) $3 \times z + 2 = 15$

(21) $3 \times z + 2 = 15$

(21) $3 \times z + 2 = 15$

(21) $3 \times z + 2 = 15$

(22) $3 \times z + 2 = 15$

(23) $3 \times z + 2 = 15$

(24) $3 \times z + 2 = 15$

(25) $3 \times z + 2 = 15$

(27) $3 \times z + 2 = 15$

(28) $3 \times z + 2 = 15$

(29) $3 \times z + 2 = 15$

(10) $3 \times z + 2 = 15$

(20) $3 \times z + 2 = 15$

(21) $3 \times z + 2 = 15$

(21) $3 \times z + 2 = 15$

(22) $3 \times z + 2 = 15$

(33) $3 \times z + 2 = 15$

(44) $3 \times z + 2 = 15$

(5) $3 \times z + 2 = 15$

(75) $3 \times z + 2 = 15$

(77) $3 \times z + 2 = 15$

(87) $3 \times z + 2 = 15$

(98) $3 \times z + 2 = 15$

(19) $3 \times z + 2 = 15$

(19) $3 \times z + 2 = 15$

(19) $3 \times z + 2 = 15$

(21) $3 \times z + 2 = 15$

(22) $3 \times z + 2 = 15$

(33) $3 \times z + 2 = 15$

(44) $3 \times z + 2 = 15$

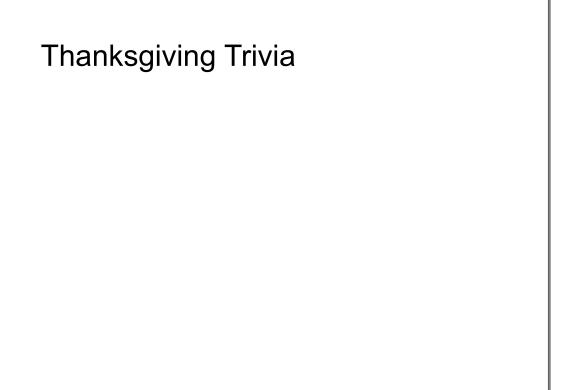
(5) $3 \times z + 2 = 15$

(75) $3 \times z + 2 = 15$

(87) $3 \times z + 2 = 15$

(98) $3 \times z + 2 = 15$

(19) $3 \times z + 2 = 15$


(21) $3 \times z + 2 = 15$

(22) $3 \times z + 2 = 15$

(33) $3 \times$

Solve.
$$0 3x - 2y + 4z = 20$$
 Example

 $3 - x + 5y + 12 z = 73$
 $3 \times + 3y - 2z = 1$
 $3 \times + 3x - 2z = 1$
 $4 \times 3 \times - 3x + 4z = 20$
 $5 \times - 3x + 4z = 20$
 $7 \times - 3x + 4z = 20$

Solve. ①
$$2x + 4y + 10z = 14$$
 Example
② $x + 2y + 5z = -4$
③ $3x - 4y - 3z = 15$
① $+ 3$
② $x + 4y + 10z = 16$
③ $3x - 4y - 3z = 6$
② $3x - 4y - 3z = 6$
③ $3x - 4y - 3z = 6$
⑤ $5x + 7z = 7$
 $3x - 4y - 3z = 6$
⑤ $5x + 7z = 7$
 $3x - 4y - 3z = 6$
⑤ $5x + 7z = 7$

A theater group sold a total of 440 tickets for \$3940. Each regular ticket costs \$5, each premium ticket costs \$15, and each elite ticket costs \$25. The number of regular tickets was three times the number of premium and elite tickets combined. How many of each type of ticket were sold?

And your assignment:
Day 2 (3.4)
-Quiz next class
(2 variable systems, word problems,
3 variable systems)