AP Calc AB Sec 6.1 day 1

Differential Equations

Read p.404-405

We will cover goal #1 today: Use initial conditions to find particular solutions of differential equations.

Note: A Differential Equation is simply an equation with a derivative in it. A solution of the differential equation is not a number, but an equation or function.

A function is a <u>solution</u> of a differential equation if the equation is satisfied, meaning it is true, when y and its derivatives are substituted into the equation.

*Ex*1: Show that $y = e^{-2x}$ is a solution of the differential equation y' + 2y = 0.

First find all of the derivatives that are used in the differential equation.

if $y = e^{-2x}$, then y'=-2e^{-2x}. Substitute both of these into the differential eq.

$$y'+2y=0$$

-2e^{-2x} + 2(e^{-2x}) = 0
0 = 0

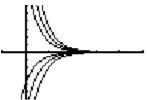
What if
$$y = 5e^{-2x}$$
 instead? $y'=5(-2)e^{-2x}$ or $y' = -10e^{-2x}$.
 $y'+2y = 0$
 $-10e^{-2x} + 2(5e^{-2x}) = 0$
 $0 = 0$

In conclusion, every solution of y'+2y=0 is in the form $y = Ce^{-2x}$ where C is an y real number. $y = Ce^{-2x}$ is called the *general solution*.

Ex 1 involves a "1st order" differential equation because y' is the highest-order derivative in the equation and the general solution involves 1 constant, C. A "2nd order" differential equation involves y' and possibly y' and y and its general solution involves 2 arbitrary constants. It can be shown that a differential equation of the "nth order" has a general solution involving n arbitrary constants.

There are more examples on p.404.

If you choose values for the arbitrary constants and graph them, you will create a family of curves known as *solution curves*. For ex1, the general solution is $y=Ce^{2x}$. Choosing arbitrary values for C gives us a family of curves like $y=12e^{2x}$, $y=5e^{2x}$, $y=8e^{2x}$, $y=-2e^{2x}$, $y=-4e^{2x}$, $y=-7e^{2x}$.



A **particular solution** can be created by simply substituting given values into the general solution. Recall that the given values are called the **initial conditions**.

*Ex*2: Verify the general solution, $y=C_1 + C_2 \ln x$ satisfies the differential equation, xy''+y'=0. Then find the particular solution that satisfies the

initial condition y=0 when x=2 and y' = $\frac{1}{2}$ when x=2.

if
$$y = C_1 + C_2 \ln x$$
, then $y' = C_2 \frac{1}{x} = C_2 x^{-1}$
and $y'' = -C_2 x^{-2}$ or $y'' = \frac{-C_2}{x^2}$

Therefore, xy'' + y' = 0

$$x(-C_2 x^{-2}) + C_2 x^{-1} = 0$$
$$-C_2 x^{-1} + C_2 x^{-1} = 0$$
$$0 = 0$$

The particular solution is found by the initial conditions.

Using y' =
$$\frac{1}{2}$$
 when x=2 and y' = $C_2 \frac{1}{x}$ we can find C_2 .
 $\frac{1}{2} = C_2 \frac{1}{2}$ then $C_2 = 1$

Also using y=0 when x=2 and y=C₁ + C₂ ln x with C₂=1 we can find C₁. $0 = C_1 + 1 \ln 2$

$$-1 \ln 2 = C_1$$

The particular solution is $y = -1\ln 2 + \ln x$ or $y = \ln x - \ln 2 = \ln \frac{x}{2}$.

Homework is Sec 6.1 day 1 p.409-410 #1, 5, 9 – 27odd, 31, 33, 35, 37, 39, 42, 45, 47, 81.