Calc Notes Section 6.2 Differential Equations: Growth and Decay

Name_____

In sec 6.1, we learned how to solve differential equations in the form y'=f(x) or y''=f(x) meaning the y's were on one side and the x's were on the other side of the equation. Today we will learn how to solve a differential equation that has a 'mixture of variables' on each side. The strategy is called "Separation of Variables" (which we will study again in 6.3)

Solve the following differential equations.

Ex 1: Solve $\frac{dy}{dx} = \frac{3x}{y}$ Ex 2: Solve y' = 6 + y

Ex 3: *Solve* xy + y' = 100x

When a rate of change of a variable y is proportional to the value of y and y is a function of time t, the proportion can be written as: $\frac{dy}{dt} = ky$ However this form is not very "user" friendly because it is not solved for y. So solve for y:

Write and solve the differential equation that models the verbal statement. Evaluate the solution at the specified value of the independent variable.

Ex 4: The rate of change of y is proportional to y. When t = 0, y = 250 and when t = 1, y = 400. What is the value of y when t = 4?

Ex 5: Suppose that 10 grams of the plutonium isotope PU-239 was released in the Chernobyl nuclear accident. How long will it take for the 10 grams to decay to 1 gram? How much PU-239 will remain after 1000 years?

Ex 6: Suppose a population of lady bugs increases according to the law of exponential growth. There were 100 lady bugs after the second day of the experiment and 400 lady bugs after the 5th day. Approximately how may lady bugs were in the original population?

Reminders: Compounded Continuously $A = Pe^{rt}$

Compounded (annually, monthly, (n))

$$A = P\left(1 + \frac{r}{n}\right)^n$$