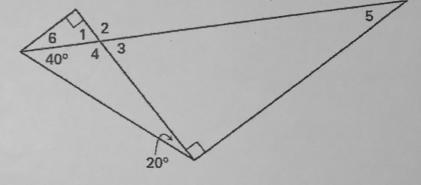

Round 1

Find the values of x and y, if possible. If not possible, explain your reasoning.

1.

4x-2=30 7y+9=30 4x=32 7y=21 x=8 y=3

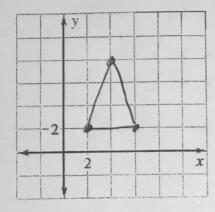
Find the perimeter of the triangle.


1nd the perimeter of the triangle.
2.
$$(4x+3)$$
 m $(8x-15)$ m $(8$

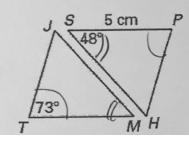
Find the measure of the exterior angle shown.

 $|(4x+8)^{\circ}|$ $|(2x+3)^{\circ}|$ $|(2x+3)^{\circ}|$ |(2xX=23

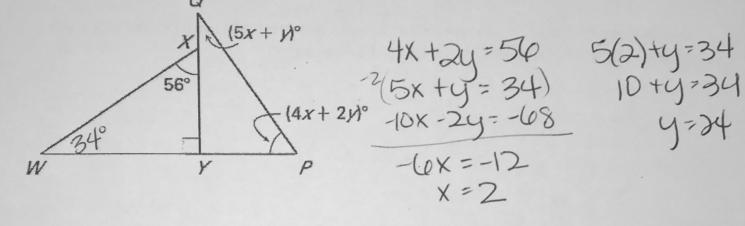
Find the measure of the numbered angle.


- 4. $m\angle 1 \ (0)^{\circ}$ 7. $m\angle 2 \ (70)^{\circ}$ 5. $m\angle 3 \ (0)^{\circ}$ 8. $m\angle 4 \ (70)^{\circ}$ 6. $m\angle 5 \ 30^{\circ}$ 9. $m\angle 6 \ 30^{\circ}$

ROUND 2


A triangle has the given vertices. Graph the triangle and classify it by its sides. Then determine if it is a right triangle.

1. A(2, 2), B(6, 2), C(4, 8)

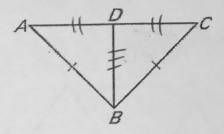

150sciles

In the diagram, $\triangle TJM \cong \triangle PHS$. Complete the statement.

Find the value of x and y.

8.

Complete the sentence with always, sometimes, or never.


9. An acute triangle is <u>Sometrus</u> scalene.

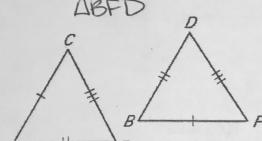
ROUND 3

Proof Complete the proof.

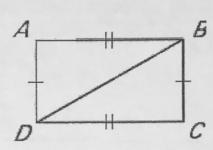
GIVEN: $\overline{AB} \cong \overline{CB}$, D is the midpoint of \overline{AC} .

PROVE: $\triangle ABD \cong \triangle CBD$

Statements	Reasons
1. $\overline{AB} \cong \overline{CB}$	1. ? GNEN
2. D is the midpoint of \overline{AC} .	2. ? GNEN
3. $\overline{AD} \cong \overline{CD}$	3. ? def. of midpoint
4. $\overline{BD} \cong \overline{BD}$	4. ? VEFLEXNE
5. $\triangle ABD \cong \triangle CBD$	5. <u>?</u> SSS

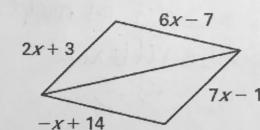

Decide whether the congruence statement is true. If it is true, write TRUE. If it is false, correct it.

6. false


7. trul

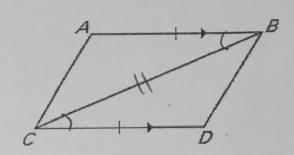
8. false

 $\triangle ACE \cong \triangle BDF$ $\triangle BFD$


 $\triangle ABD \cong \triangle CDB$

 $\triangle IHJ \cong \triangle JHK$

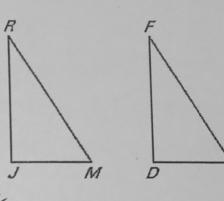
9. Find all values of x that make the triangles congruent. Explain.


$$0x-7=-x+44$$
 $7x=21$
 $x=3$

ROUND 4

Proof Complete the proof.

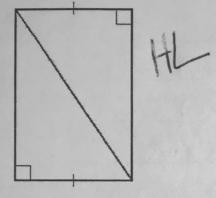
GIVEN: $\overline{AB} \parallel \overline{CD}, \overline{AB} \cong \overline{CD}$


PROVE: $\triangle ABC \cong \triangle DCB$

Statements	Reasons
1. $\overline{AB} \parallel \overline{CD}$	1. ? GNEN
2. \notin ABC \cong \notin DCB	2. ? Alt. Int Angles
3. $\overline{AB} \cong \overline{CD}$	3. ? GiNEN
4. $\overline{CB} \cong \overline{CB}$	4. ? Reflexive
5. $\triangle ABC \cong \triangle DCB$	5. ? SAS

State the third congruence that must be given to prove that $\triangle JRM \cong \triangle DFB$ using the indicated postulate. $\bigcirc \bigcirc \bigcirc$

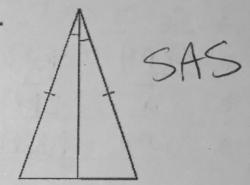
- 6. GIVEN: $\overline{JR} \cong \overline{DF}$, $\overline{JM} \cong \overline{DB}$, ? \cong ? Use the SSS Congruence Postulate.
- 7. GIVEN: $\overline{JR} \cong \overline{DF}$, $\overline{JM} \cong \overline{DB}$, $\underline{?} \cong \underline{?}$ Use the SAS Congruence Postulate.
- 8. GIVEN: $\overline{RM} \cong \overline{FB}$, $\notin J$ is a right angle and $\notin J \cong \notin D$, $? \cong ? \bigcirc M \cong D$. Use the HL Congruence Theorem.


Decide whether enough information is given to prove that the triangles are congruent using the SAS Congruence Postulate.

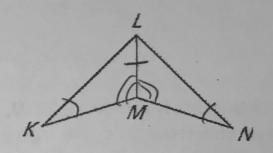
9.

ROUND 5

Decide which method, SAS, ASA, AAS, or HL, can be used to prove the triangles are congruent.


1.

2.


3.

In Exercises 4-11, complete the proof.

GIVEN: $\angle K \cong \angle N$, $\angle KML \cong \angle NML$

PROVE: $\triangle KML \cong \triangle NML$

Statements	Reasons
4. <u>K</u> = <u>K</u>	5. Given
6. KML= 4NML	7. Given
8. IM = IM	9. RefloxNe
10. SKML = DNML	11. AAS